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Abstract 

Life is becoming increasingly stressful in many aspects, e.g., due to technology-induced stress and 

stress in organizational context. The assessment of stress experienced by individuals enables stress 

management and prevention with the long-term aim to avoid psychological and physiological harm 

from excessive stress. Commonly this assessment is performed through questionnaires on perceived 

stress or physiological measurements evaluating body reactions to stress. We explore a third assess-

ment method: Our design science approach aims to unobtrusively assess perceived stress based on 

smartphone data while waiving additional devices and explicit user input. The presented design arte-

fact, myStress, reads 36 hardware and software sensors to infer users’ perceived stress levels. A pro-

totypical instantiation of myStress for the Android platform is distributed to test users. For evaluation 

purposes, the stress level additionally is determined by a questionnaire consisting of the Perceived 

Stress Scale. By analyzing data from test users, we gain first insights into the feasibility of unobtru-

sive, continuous stress assessment considering exclusively data from smartphone sensors. We find that 

several sensors seem to correlate with perceived stress, e.g., the frequency of switching the display 

on/off. For future research, behavioral and situational prevention measures can build on this method 

of unobtrusive stress assessment. 

Keywords: human stress detection, mobile sensing, smartphone application, design science. 

1 Introduction 

Today stress is omnipresent as never before. A facet increasingly discussed in information systems 

literature is technostress. It contributes to a general trend of growing overall stress perception in hu-

man society with detrimental effects for human health and performance (Riedl, 2013). This increase in 

stress is not limited to an organizational context and not only induced by technology, but in many as-

pects life generally is becoming more stressful (Ferreira et al., 2009). 

In spite of the fact that stress is neither per se good nor bad (Ferreira et al., 2009; Lu et al., 2012), ex-

cessive stress is the second most frequent health problem in the European Union (Varvogli and Darvi-

ri, 2011). Besides that, stress influences the personal wellbeing (Riedl, 2013) and attains growing at-

tention in the German economy and legislation, especially in the industrial sector (Berufsgenossen-

schaft Handel und Warendistribution, 2013). Moreover, stress can also negatively affect important 

decisions (Astor et al., 2013). To address this problem, biofeedback is seen as a possible solution 

(Varvogli and Darviri, 2011). Preceding this feedback or any behavioral or situational stress preven-

tion measure, however, an assessment of the level of stress is required.  
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This assessment is commonly performed through questionnaires (e.g. Perceived Stress Scale (Cohen et 

al., 1983), Perceived Stress Questionnaire (Levenstein et al., 1993)) or physiological measurements 

(e.g. Cortisol levels (Riedl, 2012), skin conductance (Riedl et al., 2013)). While questionnaires focus 

on perceived stress, physiological measurements assess stress premised on the physiological reaction. 

Our research aims to unobtrusively assess people’s perceived stress level during daily life. While addi-

tional devices like wearables do not gain much attention in public yet (Statista, 2014c), smartphones as 

a part of everyday life (Abdelzaher et al., 2007) are an appropriate data source to gather environmental 

and behavioral information associated with stressors and strains. Thus, we waive additional devices 

and periodical questionnaires, which could burden the user and potentially be stressors themselves. 

During our design science research, we designed and developed the Android application myStress 

with 36 integrated sensors to infer the perceived stress level of the user. For evaluation but not as part 

of the future system, perceived stress is determined by a questionnaire that appears three times a day. 

Data privacy, usability and resource efficiency are important non-functional requirements. Our re-

search provides first insights into the feasibility of exclusively smartphone-based unobtrusive stress 

detection (e.g. frequency of switching display on/off correlates with stress) and its limits (e.g. need for 

frequent usage of one smartphone). 

This paper is structured according to the suggestions by Gregor and Hevner (2013): The next section 

provides background on both the physiological and psychological nature of stress. Section 3 reviews 

related work on smartphone-based sensing. Section 4 outlines the research setup, Section 5 describes 

the design and distribution, Section 6 shows first evaluation results, and Section 7 concludes with an 

outlook on ongoing and future research. 

2 Theoretical Background on Stress 

There exist several definitions for the term stress. According to Varvogli and Darviri (2011) “stress is 

defined as a state of threatened or perceived by the individual as threatened homeostasis and it is re-

established by a complex repertoire of behavioral and physiologic adaptive responses of the organ-

ism”. Another definition describes stress from a purely response-based view (Aamodt, 2012). Others 

explain stress as an independent variable, which causes a reaction to people (Earnshaw and Cooper, 

2000). In this paper we build on the Transactional Model of Stress by Lazarus and Folkman (1984), 

one of the most referenced frameworks for understanding human stress (Google Scholar lists over 

30,000 quotes). Lazarus and Folkman (1984, p. 9) conceptualize stress as a two-way process that in-

volves the production of and responses to stressors: “Stress occurs when an individual perceives that 

the demands of an external situation are beyond his or her perceived ability to cope with them”.  

The human mind is permanently challenged by stressors, which are internal or external stimuli with a 

certain influence on our mental or physiological resources (Varvogli and Darviri, 2011). These stress-

ors can be both physical (e.g. temperature, humidity, noise, lack of sleep) and psychological (e.g. so-

cial problems) (Riedl, 2012; Lu et al., 2012). Yet, the respective effect and consequences depend on 

the individual. Each stressor has to pass a filtering perception to get recognized. An internal process 

called primary appraisal classifies invading stressors into three categories: positive, irrelevant or dan-

ger. The latter category is further divided into challenges, threats and harms. In a secondary appraisal, 

mind and body try to struggle with the stressors that were categorized as “danger” by the primary ap-

praisal (Lazarus and Folkman, 1984). This initial response to stressors is defined as the stress syn-

drome (Varvogli and Darviri, 2011). If an individual lacks resources to cope with these dangerous 

stressors, the result is stress, which further leads to strains (Lazarus and Folkman, 1984). 

To deal with strains, different response strategies can be applied. This process is called coping and 

Lazarus and Folkman (1984) distinguish two different types: Problem-focused coping and emotion-

focused coping. With problem-focused coping, the strained person tries to change or influence the sit-

uation that causes the stressor. Requesting assistance (e.g. seeking social support (Thoits, 1995)) or 

simply removing the stressor (e.g. turning down loud music) can be potential response strategies. If the 
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situation itself cannot be changed, then emotion-focused coping can be applied. In this case people try 

to influence the emotional arousal, which is caused by stressors during the primary or secondary ap-

praisal. A typical emotion-focused coping strategy is Diaphragmatic Breathing, in which the user tries 

to reset the autonomic nervous system by slow deep breathing (Varvogli and Darviri, 2011). Lastly, 

the used response strategy and its consequences are evaluated. This step, called reappraisal, is basical-

ly a learning process that affects future primary appraisals. 

In order to assess the perceived stress level, we focus on stressors and strains while neglecting coping 

and appraising for the purpose of stress detection. The integration of biofeedback, which takes coping 

strategies into consideration, will be part of our future work. There exist two categories for potential 

stressors: physical and psychological (Varvogli and Darviri, 2011). Physical stimuli like unwanted 

sound (Smith and Jones, 1992), temperature (Jewell, 1998) and vibration (Ayyagari, Grover and Pur-

vis, 2011) can be stressors. Also the ambient temperature in combination with the ambient humidity 

can affect the human wellbeing (Thom, 1959). But besides these physical stressors, the range of psy-

chological stressors is much broader. Psychological stressors, in an enterprise context, can be distin-

guished into three categories: organizational, technological and incidental (Adam et al., 2015). Since 

Adam et al. (2015) examined work environments, we replace the incidental category by a personal that 

considers all private and individual aspects of human life. Organizational stressors are external stimuli 

with the origin at the workplace. Work overload (Cooper, Dewe and O'Driscoll, 2001) and role over-

load (Narayanan, Menon and Spector, 1999) are common organizational stressors along with, e.g., 

corporate culture (Cooper and Cartwright, 1994) and job insecurity (Tarafdar et al., 2007). The second 

category refers to technostress, which has gained growing attention in the past years and can be count-

ed as psychological stressor (Riedl, 2012). Techno-overload, techno-insecurity and techno-complexity 

are already included above. “Techno-invasion describes situations where professionals can potentially 

be reached anywhere and anytime and feel the need to be constantly connected” and “techno-

uncertainty refers to contexts where continuing changes and upgrades to IS do not give professionals a 

chance to develop a base of experience for a particular application or system.” (Tarafdar et al., 2007). 

As last category, personal stimuli can be stressors: Examples are a bad work-home balance or special 

– both good and bad – life events (e.g. marriage, child leaving home, death of a loved one) (Holmes 

and Rahe, 1967). 

Parker and Ettinger (2007) distinguish four different levels of strains: physiology, emotion, cognition, 

and behavior. A physiological reaction to stress, for example, can be the release of the stress hormone 

cortisol (Riedl, 2013). Other examples are increased heart rate (Trimmel et al., 2003) and elevated 

blood pressure (Boucsein, 2009). Emotional und cognitive strains affect the psyche of the human be-

ing, e.g. a lack of resources leading to poor judgment (Smith, Segal and Segal, 2014) or moodiness 

(The American Institute of Stress, 2014). Finally, strains may also change the behavior. This could 

result in isolation from others (Partners Healthcare, 2004), addiction (Mayo Clinic, 2013) or nervous 

habits (The American Institute of Stress, 2014). 

Figure 1 summarizes a transactional model on stressors and strains from a high-level point of view. 

The preceding discussion and Figure 1 are not exhaustive but aim to shed some light on the concept of 

stress as basis for assessing stress levels. 

 

Figure 1. Transactional model of stress based on Lazarus and Folkman (1984) 
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3 Related Work 

The objective of myStress is to unobtrusively and continuously detect an individual's level of per-

ceived stress exclusively with one smartphone (see section 1). Related work falls into three categories: 

(1) assessing stress via a single smartphone, (2) detecting stress through several different devices (e.g. 

two smartphones or an additional Bluetooth device), (3) recognizing not stress but emotions, mood or 

activity (e.g. walking, running, cycling) with similarities in measurement techniques. The following 

paragraphs address these categories one after another. 

Assessing stress using solely one smartphone is rare. A literature review revealed two applications 

from research at Dartmouth College: BeWell (Lane et al., 2011) and StudentLife (Wang et al., 2014) 

are Android applications to assess the stress level of the smartphone user by tracking activities that 

affect physical, social and mental wellbeing. The relevant data is collected by continuously reading 

several smartphone sensors like microphone, accelerometer and light sensor. BeWell extends this data 

by additional user information entered through a web portal. StudentLife pushes multiple question-

naires to the smartphone, which have to be answered by the user, and extend the collected data by spe-

cial Dartmouth College location-based information (e.g. WiFi logs to measure the traveled distance 

inside buildings). Since both applications require the user to answer multiple (an average of 8) ques-

tionnaires daily, these systems are rather obtrusive. 

Several applications assess stress with a smartphone plus additional devices. Lu et al. (2012) use a 

second smartphone, while both Ferreira et al. (2009) and Kocielnik et al. (2013) use external devices 

to measure body reactions (e.g. increased sweating, rapid heartbeats). Lu et al. (2012) measure stress 

by analyzing the human voice and use the second phone to distinguish between speakers.  

Artefacts related to stress detection include emotion, mood, and activity detection systems. Most tech-

nical systems aiming at assessing these conditions use exclusively smartphone-based data, with the 

exception of Choudhury et al. (2008). They use an external device to measure additional parameter 

(e.g. humidity). This gathering of data can be done unobtrusively (Rachuri et al., 2010; Lee et al., 

2012) or be enriched by additional user input (LiKamWa et al., 2013; Chang et al., 2011). 

In general, different research projects have shown that the assessment of stress or stress-related psy-

chological factors based on human voice (Lu et al., 2012; Chang et al., 2011), sleep (Wang et al., 

2014; Lane et al., 2011), social interaction (Wang et al., 2014), location information (Lee et al., 2012; 

Rachuri et al., 2010), ambient information (Lee et al., 2012), body reactions (Kocielnik et al., 2013), 

activity recognition (Choudhury et al., 2008) and behavioral patterns (Ferreira et al., 2009; Kocielnik 

et al., 2013; Lee et al., 2012; LiKamWa et al., 2013) is possible. 

Table 1 summarizes key features of related systems. To the best of our knowledge, myStress is the 

first scientific approach to an unobtrusive, continuous and solely smartphone-based detection of stress.  

 

Related systems Stress Solely one smartphone Unobtrusive (no user input) 

Lane et al. (2011) x x  

Wang et al. (2014) x x  

Ferreira et al. (2009) x  x 

Lu et al. (2012) x  x 

Kocielnik et al. (2013) x   

Rachuri et al. (2010)  x x 

Lee et al. (2012)  x x 

LiKamWa et al. (2013)  x  

Chang et al. (2011)  x x 

Choudhury et al. (2008)   x 

myStress (this paper) x x x 

Table 1. Overview of related stress detection systems 
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Additionally, first commercial systems for smartphone-based stress detection are available, most nota-

bly Kelaa by SOMA Analytics UG assessing sleep quality and emotions in speech. Details on parame-

ters and performance are, however, not disclosed. 

4 Research Methodology 

To achieve our research objective (see Section 1) we follow the design science guidelines by Hevner 

et al. (2004) and the design science research methodology (DSRM) by Peffers et al. (2007). This 

methodology suggests design science researchers to run through a total of six activities: 1) identify 

problem and motivate, 2) define objectives for solution, 3) design and develop, 4) demonstrate, 5) 

evaluate, 6) communicate. Peffers et al. (2007) identify steps 1 through 4 as possible entry points for 

research. Here we apply the objective-centered approach, thus, start by defining our objectives and 

aim on the solution domain. Since we evolve a new solution (unobtrusive smartphone-based stress 

detection) for a known problem (stress) our research can be categorized as “improvement” in the 

Knowledge Contribution Framework by Gregor and Hevner (2013). 

Hence, we design myStress as an abstract design blueprint of a smartphone application with the objec-

tives to unobtrusively and continuously assess the user’s stress level and implement a prototypical in-

stantiation on Android. We started design and development with an analysis of literature on both stress 

theory and smartphone-based sensing of physiological features to build a theoretical foundation (see 

Sections 2 and 3). Feedback of potential users revealed a strong focus on usability, resource-

friendliness and consideration of data privacy to be critical non-functional success factors. During de-

velopment we applied an iterative and agile process model in order to early and directly address user 

feedback. Additionally, first releases of myStress were published to a selected community of beta test-

ers before opening a stable version to the public. A public field study was chosen as evaluation method 

in order to maintain high external validity and generalizability. 

As outlined above, our research process in general follows the DSRM, but moreover consists of two 

layers, each applying the DSRM process: In the first layer, we develop the design blueprint and an 

Android prototype for the measurement of data related to and possibly applicable for stress detection. 

In the second layer, we aim to actually assess the user’s perceived stress based on the findings from 

the first layer. After taking first design decisions that affect both layers we follow the DSRM process 

in layer one through the steps objective definition, design/development and evaluation on the defined 

subtask (Peffers et al., 2007). Currently our research is in progress – we are working on the evaluation 

in the first layer and will subsequently continue with design and development in layer two. 

5 Design and Distribution of myStress 

In layer one myStress is designed to read a total of 36 hardware (HW) and software (SW) smartphone 

sensors in order to empirically identify sensors that might be applicable for stress detection. These 

sensors are the outcome of a conceptual evaluation of unobtrusive smartphone-based measurability of 

stressors and strains from the stress model (Section 2). We reviewed the hardware and software sen-

sors made available by the Android smartphone operating system. Sensors were included in myStress 

when an intense dialog in the research team and with supporting experts and users or related scientific 

work suggested at least one reasonable link to the stress model. Each sensor may be related to multiple 

facets of the stress model, e.g. both to a psychological stressor and a behavioral strain. The number of 

links is irrelevant at this point, as a single reasonable link to the stress model suffices for incorporating 

the sensor. Its individual correlation with perceived stress and its ability to contribute to stress detec-

tion in a portfolio of sensors are a question for subsequent empirical evaluation. We do not hypothe-

size and evaluate a causal relationship between sensors and stressors or strains from the stress model, 

but aim on stress prediction. Table 2 lists the resulting selection of sensors with one respective stress 

model reference per sensor. This selection has a clear focus on physical and psychological stressors as 
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well as behavioral strains, but also covers single aspects of physical and cognitive strains (e.g. reduced 

typing accuracy). Yet, many items of the presented stress model require contextual data (e.g. infor-

mation about the workplace), explicit user input (e.g. about evoked emotions) or physiological meas-

urements (e.g. sweating) and, thus, cannot be measured unobtrusively in a generalized field study.  

 

Type Sensor  Type Sensor  Type Sensor 
     

Psychological  stressors  Physical stressors  Behavioral strains 

SW Battery charging status  HW Ambient temperature  SW Activity variance 

SW Battery level  HW Ambient humidity  SW Activity assessment 

SW Calendar events  HW Ambient pressure  SW Phone call log 

SW Cellular Cell Identifier  HW Ambient light  SW Received SMS 

SW Cellular Location Area Code  HW Audio amplitude  SW Screen switching 

SW Cellular Network Code  HW Audio frequency  SW Sent SMS 

SW Data connection status  HW Battery temperature  HW Step counter 

SW Notifications  HW Orientation (Azimuth)  SW Stress questionnaire meta 

SW RAM available  HW Orientation (Pitch)  SW Text information 

SW Roaming status  HW Orientation (Roll)   

SW Running apps  HW Proximity  Cognitive strains 

SW Visible apps    SW Deleted characters 

SW Weather  Physical strains 
SW WiFi status  SW Voice analysis 

Table 2. List of the 36 sensors of myStress 

The implemented sensors can be divided into time-triggered and event-triggered. While time-triggered 

sensors are probed in intervals of 5 minutes (e.g. orientation, ambient temperature, audio frequency 

and amplitude), event-triggered sensors catch and react to certain events on the smartphone (e.g. SMS, 

WhatsApp or Facebook messages sent and received, voice analysis during phone calls, text sentiment). 

The interval of 5 minutes was chosen in order to trade-off granularity of measurement and resource 

efficiency (e.g. battery consumption, data volume). 

We selected the Android platform starting with version 2.3.3 to reach approx. 80% of smartphone us-

ers (Statista, 2014a, 2014b). The architecture of myStress is based on the AIRS sensor framework by 

Trossen (2014) and adjusted to fit our sensor list. In order to assess the association of different 

smartphone sensors with perceived stress, users of myStress are asked to answer a short questionnaire 

on their smartphone three times a day. While this questionnaire is not unobtrusive, it is, however, only 

included for researching how to assess stress unobtrusively – we aim to make it redundant and spare it 

within the final system. The questionnaire consists of the 4-item Perceived Stress Scale (PSS-4) pro-

posed by Cohen, Kamarck and Mermelstein (1983). PSS was shown to be a valid measure for linguis-

tically quantifying stress sensed by a human being and is frequently used in research (e.g. Hobfoll 

(1989), Heidt et al. (2014), Haushofer and Fehr (2014)). Although the PSS-4 has lower internal relia-

bility than PSS-14, it provides much more usability for measuring perceived stress over phone (Cohen 

et al., 1983). In this trade-off between internal reliability and usability, usability was chosen to be an 

important aspect for the present study. We try to eliminate the questionnaire as a confounding varia-

ble, because studies highlight the stress-inducing aspect of questionnaires (Scollon, Kim-Prieto and 

Diener, 2003; Intille et al., 2003). Despite the classic version of PSS-4 using a period of one month, it 

remains valid on significantly smaller periods (Cohen, 2010). We adapted the original PSS-4 wording 

from “In the last month […]” to “Since the last survey […]”. During the evaluation, PSS-4 scores are 

matched with data from the 36 smartphone sensors. On the resulting data set we explore associations 

of sensors and perceived stress using correlation tables and supervised learning algorithms. 

To maintain data privacy, data collection has to be manually activated by the user after the installation 

of myStress and can be paused at any time. Every 12 hours the collected data is uploaded to a cloud 

storage. This interval was chosen as a trade-off between data timeliness and resource usage. In order to 

spare the user’s limited data connection, the upload only occurs with an existing WiFi connection.  
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In order to make it publicly available and reach a broad and diverse audience for the field study, 

myStress has been published in the Google Play Store. We promoted participation via snowball sam-

pling on Facebook and Twitter as well as through posts in Quantified Self forums and e-mails to col-

leagues and friends. All participants have been asked to answer the questionnaire at least 33 times be-

fore ending the study – the exact number is a trade-off between a rich data set with statistical signifi-

cance and burden to the participants. 

Although the first version of myStress is not yet completely unobtrusive, we posit that a) the evalua-

tion of the results can be a good indicator for the feasibility of unobtrusive and continuous 

smartphone-based stress detection and b) it is already less obtrusive than existing artifacts and ap-

proaches (e.g. Ferreira et al. (2009), Kocielnik et al. (2013), Lu et al. (2012)). The objective of re-

source-friendliness has been met after fixing some power-consuming bugs in first versions of the ap-

plication and myStress now causes only up to approximately 7 % of the smartphone’s energy con-

sumption in use at any given time. Data privacy, as requested by potential users, has been implement-

ed through basic privacy measures: anonymity through hashed device IMEI to distinguish but not 

identify users and abandonment of raising personal data. The lean user interface that has been de-

signed together with usability professionals makes myStress easy to use and offers the opportunity to 

keep an eye on own activity data. 

In future versions the actual stress prediction through the application of online supervised machine 

learning is planned to be integrated into myStress. Calculation directly on the smartphone prevents 

data privacy concerns. The PSS-4 questionnaire will be abandoned after an initial learning phase, mak-

ing myStress considerably less obtrusive. Furthermore, it is intended to reduce the number of sensors 

by opting for those that shape up as indicators with high predictive power in out-of-sample tested sta-

tistical models. This selection will be done using variance inflation factors and stepwise regressions. 

6 Preliminary Data Analysis 

At the time of writing this paper, data collection and analysis are in progress. Since its release 157 us-

ers installed myStress, although only 77 actually provided data and 42 of them answered at least one 

questionnaire. Several different explanations might be imaginable for this phenomenon, for example a 

non-existing WiFi connection, data privacy concerns (downloaded, but not started yet) or installation 

out of curiosity. Out of these 157 installations, a major part (92) comes from Germany, followed by 28 

from the US, 10 from India and 8 from Brazil. MyStress was installed on a total of 91 different devic-

es with Samsung Galaxy S4 (9 installations), S3 Mini (9), S4 Mini (7), S3 (7), HTC One M7 (7) and 

Google Nexus 5 (7) being the most popular devices among our users. A handful of participants already 

reached the desired goal of 33 answered questionnaires and currently a dozen further contributed 10 or 

more observations. Up to now 483 questionnaires have been answered across the 42 participants. Rela-

tions between installation-based information and usage information, e.g. information about the instal-

lation status for a certain participant, cannot be examined because of data privacy measures. 

One preliminary insight into data concerns the overall distribution of PSS-4 values in our user base, 

which agrees with representative surveys on the distribution of stress (Statista, 2010) (cf. Figure 2a). 

Although this shows a clear trend to low levels of perceived stress, we observe differences in stress 

intensity over time and users. Furthermore, first evaluation shows correlations between, e.g., high 

stress levels and high smartphone usage as operationalized by multiple sensors – maximum number of 

running applications (Pearson correlation 0.38 with a p-value <0.001) and average battery temperature 

(cf. Figure 2b; Pearson correlation 0.20 with a p-value <0.001). With the frequency of switching the 

display on or off, we also examined a nervous habit as suggested by The American Institute of Stress 

(2014) and noticed a positive Pearson correlation of 0.20 with a p-value <0.001 with perceived stress. 

These bivariate correlations might seem low. Future data analysis will use multivariate models with 

higher overall predictive power as single sensors are not perfectly correlated. In the end, the system’s 

usefulness will strongly depend on the level of accuracy of sensing and will have to be evaluated in 
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future research. Because of the ongoing data collection and analysis, in this research-in-progress paper 

we refrain from providing further preliminary statistics which might not hold true once the rigorous 

analysis and testing are concluded. 

 
Figure 2. (a) distribution of PSS-4 scores;   (b) relation to average battery temperature (n=483) 

7 Conclusion and Future Work 

Our aim is to design a system able to unobtrusively assess an individual’s perceived stress exclusively 

based on smartphone data. Hence, we presented the design and prototypical implementation of myS-

tress – a software artefact capable of measuring smartphone hardware and software sensors that could 

allow the detection of stress – and gave first insights into the ongoing data collection and evaluation. 

Latter gave reason to the hypothesis that unobtrusive stress detection might be feasible to some degree 

solely based on smartphone data. This, however, needs to be confirmed through thorough formal eval-

uation after finishing data collection. 

One apparent limitation of our overall research is the restriction to sense perceived stress in contrast to 

actual stress, which are not necessarily identical (Riedl, 2013). In addition, our approach is constrained 

by the diversity of smartphone devices, and thereby the variety of different hardware sensor imple-

mentations, that can be used for data collection. Although we recruited people with Android 

smartphones around the globe, most participants are based in Germany and cannot be assumed to be 

representative for any specific user group. Furthermore, myStress relies on a continuous usage of one 

smartphone. Hence, we assume that myStress is capable to assess stress for people, which regularly 

use solely one smartphone for private and business purposes. Finally it is by no means clear, that a 

technological solution for perceived stress detection is the most appropriate solution, since 

smartphones itself are potential stressors (Lee et al., 2014). Nevertheless, we contend that it is worth 

exploring and evaluating how smartphone-based sensing can support stress management. In future 

work, one aspect of this will be finding ways for assessing in how far non-usage of the smartphone 

associated with a lack of meaningful sensor data is associated with stress perception or coping. 

Future work will additionally include, first, a thorough statistical data analysis and, second, extending 

myStress to actually detect perceived stress by means of sensors that were found to be relevant in our 

evaluation. Detection will be based upon a pre-trained general, unpersonalized classifier that improves 

prediction results through subsequent personalization, similar to Rachuri et al. (2010). Further consid-

eration will aim on the selection of an appropriate online learning algorithm that can achieve this per-

sonalization. In a next step, literature-backed biofeedback and suggested measures against stress can 

be included into the application to provide an additional benefit to the user. In addition, an unobtrusive 

and continuous perceived stress detection can be the foundation for a stress adaptive computing sys-

tem suggested by Picard and Liu (2007) and Adam et al. (2014; 2015). 
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